Ocean Acidification: What is it?

Terrie Klinger Barer Professor of Sustainability Science UW Marine and Environmental Affairs

thatin)

Source: http://kimprint.wordpress.com/

Ocean Acidification: What is it? A prolonged reduction in seawater pH, driven by increasing levels of carbon dioxide (CO₂) in seawater

Sea Unhin

Source: http://kimprint.wordpress.com/

The rate of change is rapid

CO_2

Gas Exchange Between Air and Ocean

Net Accumulation in Ocean

> Photosynthesis Respiration

Circulation

Geological Reservoir

Photosynchesis

Respiratio

Chemistry of Ocean Acidification

Atmospheric and Oceanic CO₂ and pH

Source: NOAA Pacific Marine Environmental Laboratory

The rate of recent change is rapid

Source: Carol Turley, PML

"People wrote me and said you're wrong...and I'm going to prove you're wrong. And I took comfort in that. But the rebuttals never came. As people looked closely at the evidence ... they slowly came to realize that this is a serious issue."

JOANIE KLEYPAS, NCAR

Carbonate levels predicted to drop as ocean acidifies

Saturation state of aragonite (a form of calcium carbonate)

Exposed shells and skeletons likely to dissolve

Global Models

http://www.whoi.edu/oceanus/

Regional Expression of OA

Surface pH in the California Current System

Gruber et al. 2012

9.0-8.5 8.0-7.5 7.0-2002 2004 2006 2008 2010 2000 Year

Figure 1. Trends in ocean pH taken from Tatoosh Island, Washington, from 2000-2010, expressed on the total scale. 2004 not reported because of probe failure. N = 37,038. doi:10.1371/journal.pone.0053396.g001

Source: Wootton and Pfister 2012

Local Expression of OA

Water Quality Variables Cattle Pass Autumn 2011

South Station					
Measurement	Minimum	Maximum	Average	Standard Deviation	Range
рН	7.59	7.78	7.71	0.05	0.18
pCO ₂ (µatm)	750.28	1192.88	912.05	120.63	442.61
Calcite	1.04	1.52	1.31	0.14	0.49
Aragonite	0.65	0.96	0.82	0.09	0.30
Dissolved					
Oxygen (mg/L)	3.77	8.14	5.56	1.17	4.37
Salinity (ppt)	29.82	32.87	31.28	1.05	3.05
Temperature (C)	7.94	10.30	9.01	0.71	2.35
Anthropogenic					
DIC	10.07	16.40	13.60	1.84	6.32

Data Source: Connie Sullivan, UW

Washington is Particularly Vulnerable to Acidification

Ocean acidification is appearing in Washington decades *sooner* than anticipated.

A combination of regional factors can exacerbate acidification caused by global CO₂ emissions:

Coastal upwelling of CO₂-rich waters **Runoff** of nutrients and organic carbon from land-based activities **Decay of organic matter** in subsurface waters **Emissions** of acidifying gasses (NO_x and SO_x)

New Instruments and Observing Capacity (NOAA and UW)

Regional Efforts

New Experimental Facilities at Friday Harbor, Shannon Point, and NOAA Seattle

Washington State Panel Reports

NOAA OAR Special Report

Washington Shellfish Initiative Blue Ribbon Panel on Ocean Acidification

Scientific Summary of Ocean Acidification in Washington State Marine Waters

Editors

Richard A. Feely Terrie Klinger Jan A. Newton **Meg Chadsey**

NOAA Pacific Marine Environmental Laboratory University of Washington School of Marine & Environmental Affairs University of Washington Applied Physics Laboratory Washington Sea Grant

Advance Copy - November 2012

Washington State Blue Ribbon Panel on Ocean Acidification

Ocean Acidification: From Knowledge to Action

November 2012

http://www.ecy.wa.gov/water/marine/oceanacidification.html

Three Big Challenges in OA Research

1. Describe local and regional conditions

1. Identify biological & ecological responses

1. Mitigate societal impacts

Photo: Linday Hesla National Geographic

Acknowledgements

University of Washington NOAA Partners: PMEL, NWFSC, Sea Grant National Science Foundation Education Foundation of America NW Straits Initiative

Time history of atmospheric carbon dioxide from 800,000 years ago until 2007

http://www.esrl.noaa.gov/gmd/ccgg/trends/history.html

Seawater Carbonate System

OCEAN ACIDIFICATION

HOW WILL CHANGES IN OCEAN CHEMISTRY AFFECT MARINE LIFE? CO₂ absorbed from the atmosphere

CO_2 + H_2O + $CO_3^{2-} \rightarrow 2 HCO_3^{-}$

carbon dioxide

carbonate ion 2 bicarbonate ions

consumption of carbonate ions impedes calcification

Source: NOAA PMEL

Zeebe & Ridgewell, 2012